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ABSTRACT

In recent years, pre-trained graph neural networks (GNNs) have been developed as gen-
eral models which can be effectively fine-tuned for various potential downstream tasks
in materials science, and have shown significant improvements in accuracy and data ef-
ficiency. The most widely used pre-training methods currently involve either supervised
training to fit a general force field or self-supervised training by denoising atomic struc-
tures equilibrium. Both methods require datasets generated from quantum mechanical
calculations, which quickly become intractable when scaling to larger datasets. Here we
propose a novel pre-training objective which instead uses cheaply-computed structural
fingerprints as targets while maintaining comparable performance across a range of dif-
ferent structural descriptors. Our experiments show this approach can act as a general
strategy for pre-training GNNs with application towards large scale foundational models
for atomistic data.

1 INTRODUCTION

Graph neural networks (GNNs) have gained significant traction in materials science due to their adaptability
and effectiveness across diverse applications [[1,[2, [3]. Their rapid adoption is driven by the pressing chal-
lenges in materials discovery and evaluation, where conventional approaches for measuring or computing
material properties are often costly, time-consuming, and reliant on complex synthesis and characteriza-
tion techniques, or computationally demanding ab initio simulations with density functional theory (DFT)
[4}5]. Furthermore, traditional machine learning models for property prediction typically require extensive
feature engineering and domain expertise, limiting their generalizability across the material space [6]. In
contrast, GNNs are powerful and broadly applicable models that capture intricate structural and chemical
relationships with minimal feature engineering, enabling substantial advancements in property prediction
[7, 8L 9L 104 11} (12} [13]], materials screening [14} (15} |16], molecular dynamics simulations [[17, 18], and the
inverse design of novel materials [8} (19, 20].

A significant challenge for GNNss is their reliance on large amounts of training data, which are often scarce
or difficult to obtain. A promising approach to address this limitation is pre-training, where models are
initially trained on large upstream datasets before being fine-tuned on smaller downstream datasets [21,
22]. This approach enables the learning of robust, transferable underlying representations, reducing the
amount of task-specific data required for effective performance. Current pre-training strategies for GNNs
in the materials domain can be broadly categorized into two classes: supervised and unsupervised. In
supervised pre-training, GNNs are initially trained on large-scale datasets with explicit target properties,
before being fine-tuned on the usually much smaller, task-specific datasets with related property objectives
[23L 124} 25} 26]]. In contrast, unsupervised pre-training of GNNs eliminates the need for explicit labels by
generating surrogate labels during the pre-training process [27, 28]]. This approach, also known as self-
supervised learning, includes strategies such as pre-training via denoising, where the surrogate objective
involves predicting the amount of noise added to the Cartesian coordinates of molecules or materials at
equilibrium [29, 30].

An underlying limitation of both supervised and self-supervised pre-training strategies for GNNs is their
dependence on computationally expensive quantum mechanical calculations to generated training data. In
supervised pre-training, target labels are most commongly the DFT-calculated forces and energies. Addi-
tionally, variations in DFT settings across different datasets introduce distributional discrepancies, making
it challenging to merge them into a larger, unified pre-training dataset [31]. Similarly, self-supervised pre-
training with denoising still relies on DFT geometry optimization to obtain equilibrium structures, despite
not requiring any specific labels. This suggests that while current pre-training strategies for GNNs are
largely effective, they remain constrained by the availability of high-fidelity data and labels, preventing
their scale-up to the levels seen in other domains such as image and text.



Motivated by the need for a pre-training strategy that can effectively utilize the extensive amount of un-
labeled data, we propose pre-training GNNss using features derived from structural descriptors as the pre-
training objective. Structural descriptors are physics-informed representations of molecular or materials
structures, capturing essential information about their composition and geometry while respecting physical
requirements such as symmetry, smoothness, and completeness [6]. For these reasons, structural descriptors
such as ACSFs [32] and SOAP [33] have been widely used as machine learned force fields. In our study,
we aim to leverage the characteristics of these descriptors as universally applicable physical priors for the
GNN model. In the fine-tuning stage, the GNN is then free to further refine upon these priors towards the
desired objective of interest.

2 METHODOLOGY

2.1 BACKGROUND

The structure of a periodic material can be succinctly captured by its unit cell—a minimal 3D arrangement
of atoms that serves as the fundamental building block of the crystal. By repeating this unit cell infinitely
in all directions, the full periodic crystal structure is reconstructed. Given a structure S with [V atoms in its
unit cell, it can be fully described by the tuple S = (Z, X, L), where Z = (Z1,...,Zy) € Z¥ is a vector
of N atomic numbers, X = (x1,...,&ZN) € RN x3 represents the Cartesian coordinates of the N atoms,
and L = (I,15,13) € R3*3 is a matrix of lattice vectors.

2.2 STRUCTURAL DESCRIPTORS

In this work, we illustrate our approach by selecting three representative structural descriptors to gen-
erate pre-training labels during the pre-training process: 1) weighted atom-centered symmetry functions
(WwACSFs) [34], 2) Gaussian multipoles (GMP) [35,136], and 3) embedded atomic density (EAD) 37} 38]].
All three descriptors are selected as featurizers that remain compact across the composition space, ensuring
robustness to the elemental diversity of the pre-training dataset.

2.2.1 WEIGHTED ATOM-CENTERED SYMMETRY FUNCTIONS

Introduced as an invariant featurization method for high-dimensional neural network potentials [32], the
atom-centered symmetry functions (ACSFs) are descriptors of a chemical system’s geometry. In particular,
the classic G2 radial function of ACSFs is given by
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where 17 and R, are parameters that determine the width and the shift away from the center of the Gaussians
respectively. The interatomic distance between atoms ¢ and j is represented as R;;, and f. denotes a
cutoff function, commonly the cosine cutoff function. However, a known problem of the original ACSFs
is the rapid expansion of output feature vector dimensions as the number of distinct elements in the system
increases. To address this challenge, wACSFs [34] offer a solution by implicitly incorporating the chemical
environment’s composition. This is achieved through the introduction of element-dependent weighting
functions g (Z;) into Equation i}

G2 = g(2) Y exo (=0 (Riy — Ro)*) - o (Rig), 2
J
where Z; is the atomic number of atom j. In this work, we let g (Z;) = Z;.

2.2.2 GAUSSIAN MULTIPOLE

The Gaussian multipole (GMP) featurization scheme extracts rotationally invariant feature vectors by lever-
aging multipole expansions of the electron density around atoms. These features interpolate between el-
ement types and are computed as inner products between the electron density and atom-centered probe
functions. The full GMP feature vector is defined as
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where abc is the index of the spherical harmonic function with order n = a + b + ¢, wap. = n!/(aldblc)),
P(a, b, c) is the set of all possible ordered combinations of a, b and ¢, and
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where (-, -) denotes the inner product of 2 functions, V' is the volume, S, represents the angular probe
and GP¢ is the radial probe. The electron density of the system is approximated by linear combinations of
primitive Gaussians G9™1Y centered at each atom. For precise definitions of the probe functions and other
additional details, please see Ref. [33].

2.2.3 EMBEDDED ATOM DENSITY

The embedded atom density (EAD) descriptor is inspired by the embedded atom method (EAM) (37, 138,

which assumes that each atom is embedded within the electron cloud of its neighboring atoms when model-

ing atomic bonding. EAD modifies EAM by including a linear combination of atomic orbital components:
2

L
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where Z; represents the atomic number of neighboring atom j, L represents the quantized angular momen-
tum, and [, [, [, are the directional angular momentum components for the x, y, z directions, respectively.
The term ®(R;;) is explicitly written as:
ety s - ii—Rs)?
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where f.(R;;), n and R, are defined as in Eq. [I| EAD improves upon Gaussian symmetry functions (e.g.,
ACSFs) by implicitly incorporating angular terms when L > 0, whereas symmetry functions explicitly

separate radial and angular components. This implicit encoding reduces computational cost by eliminating
the need to sum over each neighbor individually.

2.3 GRAPH NEURAL NETWORKS

The proposed pre-training strategy in this paper is model-agnostic and can be applied to any graph neural
network (GNN) architecture for atomistic data. In this work, we perform our experiments with TorchMD-
Net [39], a recently developed model based on an equivariant transformer architecture.

2.4 DATASETS

Our descriptor-based pre-training dataset, referred to as “MP Relaxed,” consists of 62,783 equilibrium
structures obtained from structural relaxations performed by the Materials Project [40]. For fine-tuning, we
selected datasets targeting 8 properties from the MatBench suite [41]: exfoliation energy, frequency of the
last phonon in the PhDOS peak, refractive index, shear modulus, bulk modulus, formation energy, and band
gap. In addition to these, we incorporated three specialized datasets. The 2D materials dataset focuses on
two-dimensional materials with work function as the target property [42]. The metal-organic frameworks
(MOFs) dataset contains crystal structures where the target property is the band gap [43]. Lastly, the
metal alloy surfaces dataset (referred to as Surface) includes structures with adsorption energy as the target
property [44]]. An overview of these datasets is provided in Table

Dataset # Structures  Property Unit

1. JDFT 636  Exfoliation energy meV/atom
2. Phonons 1,265  Freq. at last phonon PhDOS peak 1/cm
3. Dielectric 4,764 Refractive index —
4. (Log) GVRH 10,987  Shear modulus GPa
5. (Log) KVRH 10,987 Bulk modulus GPa
6. Perovskite 18,928 Formation energy eV/atom
7. MP Form 132,752  Formation energy eV/atom
8. MP Gap 106,113  Band gap eV
9. 2D 3,814  Work function eV
10. MOF 13,058 Band gap eV
11.  Surface 37,334  Adsorption energy eV

Table 1: Overview of the finetuning datasets used for benchmarking the performance of the pre-trained
models. The first eight datasets are part of the MatBench suite.

2.5 TRAINING SETUP

The TorchMD-Net model is implemented in PyTorch as part of the MatDeepLearn package [1]]. We directly
use the implementations of structural descriptors from StructRepGen [45] and GMPFeaturizer [36]]. The
finetuning experiments are averaged across 5 runs with different seeds. The train:validation:test
splitratiois 0. 6:0.2:0. 2 for fine-tuning on every downstream dataset. Detailed hyperparameter settings
can be found in Appendix[A]



3 RESULTS

We begin by evaluating the effectiveness of our proposed pre-training strategy, which utilizes chemical de-
scriptors as self-generated pre-training labels, on the 11 downstream datasets listed in Table[I]} Specifically,
we pre-train TorchMD-Net models independently using the three selected descriptors—wACSF, GMP, and
EAD—for 200 epochs. To generate node-level features for each structure in the MP Relaxed dataset using
wACSF, we set R, = [0,1,2,3,4,6,8,10] and n = [0.01,0.1,0.4,1.0, 3.5, 5.0], resulting in a feature di-
mension of 48. For GMP, we use n = [—1,0, 1, 2] and o = [0.5, 1.0, 1.5, 2.0], yielding a feature dimension
of 13. For EAD, we set L = 2, n = [1,5], and R, = [0.0 : 0.05 : 8.0], an arithmetic sequence from 0.0
to 8.0 with a common difference of 0.05, resulting in a feature dimension of 1920. After pre-training, we
fine-tune each model on the downstream datasets for an additional 100 epochs. Notably, the pre-training
descriptor labels are node-level, whereas the target properties in the downstream datasets are graph-level.

The finetuning results of pre-training with descriptors are summarized in Table 2] Here, the baseline refers
to training the models directly on the downstream datasets without any prior pre-training. From Table
we observe that all three descriptors—wACSF, GMP, and EAD—demonstrate significant average improve-
ments in MAE compared to the baseline. Notably, pre-training with EAD achieves the highest average
MAE improvement of 16.9% over the baseline, closely followed by wACSF at 16.8%, while GMP ranks
third with an average improvement of 15.2%. Among the 11 datasets, EAD achieves the lowest MAE on 7,
demonstrating its superior performance in most cases. Overall, the percentage improvement over the base-
line for each individual dataset ranges from 4.97% to 35.0%, underscoring the effectiveness of pre-training
the neural networks with descriptor labels.

JDFT Phonons Dielectric GVRH KVRH Perovskites 2D MOF Surface MP gap MP form‘Avg. % Impr.

Baseline 57.6  158.6 0486 0.1100 0.0846  0.0478 0.298 0.254 0.0778 0.233  0.0354 ‘ -

wACSF 44.0 106.5 0.404 0.0906 0.0630 0.0415 0.225 0.261 0.0662 0.219  0.0313 16.8
GMP 452 1118 0.385  0.0818 0.0593  0.0420 0.260 0.255 0.0743 0.234  0.0317 15.1
EAD 49.6 1350 0.348 0.0818 0.0550  0.0398  0.217 0.242 0.0653 0.230  0.0350 16.9
Best % Impr. 23.7 329 28.4 259 350 16.8 273 497 162 6.02 11.6 ‘ -

Table 2: MAEs on the finetuning datasets comparing the performance of TorchMD-Net pre-trained with
different descriptors. Results are averaged over 5 runs, each with a different seed. Models are pre-trained
for 200 epochs and finetuned for 100 epochs. The last column, avg. % Impr., shows the percentage im-
provement in MAE averaged across a specific row. The lowest MAE for a specific dataset is highlighted in
bold.

Notably, the three descriptors exhibit subpar performance on the MOF dataset, achieving only modest MAE
improvements of less than 5%. In particular, pre-training with wACSF fails to outperform the baseline
on this dataset, yielding an MAE of 0.261 compared to the baseline’s 0.254. To explore this behavior,
we visualize the structural embeddings of the best-performing dataset, KVRH, and the worst-performing
dataset, MOF, as shown in Fig. |1} To generate graph-level embeddings, each structure from the downstream
datasets is first processed through the pre-trained TorchMD-Net models to obtain node-level embeddings.
These node-level embeddings are subsequently aggregated using add-pooling to produce a single graph-
level embedding for each structure. Finally, the high-dimensional graph-level embeddings are projected
into a 2-dimensional space using t-distributed stochastic neighbor embedding (t-SNE).

In Fig. [T} we compare the embeddings of TorchMD-Net models pre-trained with different chemical de-
scriptors in capturing structural and compositional representations for the KVRH and MOF datasets. For
the KVRH dataset, all three models pre-trained with the respective descriptors successfully generate mean-
ingful representations, resulting in distinct clusters corresponding to structures with similar bulk modulus
values. In contrast, the models face challenges in producing effective representations for the MOF dataset,
where structures with similar band gap values fail to form clear groupings. This difference in the qual-
ity of graph-level embeddings highlights the disparity in fine-tuning performance between the two datasets.
Specifically, the KVRH dataset achieves a substantial MAE improvement of up to 35.0%, whereas the MOF
dataset exhibits only a modest improvement of 4.97%. This contrast can likely be attributed to the MOF
dataset being more out-of-distribution relative to the pre-training dataset. Specifically, the MOF dataset
includes much larger structures, averaging 84.8 atoms per structure, compared to 29.9 atoms in the pre-
training dataset and just 8.63 atoms in the KVRH dataset. This size disparity likely hampers the model’s
ability to generalize effectively to the MOF dataset.

3.1 DESCRIPTOR HYPERPARAMETER TUNING

We investigate how different hyperparameter settings for the descriptors influence downstream fine-tuning
performance. Specifically, for each descriptor, we introduce two additional hyperparameter sets alongside
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Figure 1: Visualization of Graph-Level Embeddings: t-distributed stochastic neighbor embedding (t-SNE)
plots of graph-level embeddings from the pooling layer for models pre-trained with wACSF, GMP, and
EAD. Panels (a)-(c) correspond to the KVRH dataset; panels (d)-(f) correspond to the MOF dataset. Data
points are color-coded based on bulk modulus (GPa) and band gap (eV), respectively.

those used in Table 2] We then pre-train models using these different hyperparameter sets and fine-tune
them on the downstream datasets accordingly. The hyperparameter settings are shown in Table 3]

WACSF GMP EAD
R n d n o d L R n d
[0,1,2,3, [0.01,0.1,0.4, . .
Set 1 4,6,8,10) 1.0,3.5,5.0) 48 [-1,0,1,2]  [0.5,1.0,1.5,2.0] 13 2 [0.0:0.05:80] [1,5 1920
Set2 0,1,2,3,4] [0.01,0.1,0.4,1.0] 20 [-1,0,1,2] [0.1,0.2,0.3] 10 1 [0.0:0.05:12] [1,2,5,10] 3840
[0,1,1.5,2,2.5,3, [0.01,0.06,0.1,0.2,0.4, [0.167,0.333,0.5, ) )
Set3 35156780, 10 0.7.1.0,5.0,3.5.5.0) 140 [-1,0,1,2,3,4] 0.667.0.833, 1.0] 31 1 [0.0:0.05:8.0] [1,2,3,5] 2560

Table 3: Different descriptor hyperparameter settings used to generate node-level features in R?. A cutoff
radius of 8.0 is applied for Sets 1 and 3 of EAD, while Set 2 uses a cutoff radius of 12.0. Set 1 is used for
the results obtained in Table 2]

JDFT Phonons Dielectric GVRH KVRH Perovskites 2D MOF Surface MP gap MP form‘Avg. % Impr.

Baseline 57.6  158.6 0.486  0.1100 0.0846  0.0478 0298 0.254 0.0778 0.233  0.0354 ‘ -

wACSF-1 44.0 106.5 0.404  0.0906 0.0630 0.0415 0.225 0.261 0.0662 0.219 0.0313 16.8
wACSF-2 45.0  109.7 0.371  0.0895 0.0608  0.0420 0.234 0.257 0.0634 0.222  0.0303 17.6
wACSF-3 445  103.9 0.373  0.0873 0.0593  0.0448 0.231 0.282 0.0671 0.226  0.0319 16.0
GMP-1 452  111.8 0.385 0.0818 0.0593  0.0420 0.260 0.255 0.0743 0.234  0.0317 15.1
GMP-2 462 1074 0.405 0.0815 0.0593  0.0422  0.260 0.254 0.0680 0.235 0.0316 15.5
GMP-3 446 1117 0.420  0.0812 0.0585  0.0420 0.261 0.254 0.0701 0.233  0.0317 15.2
EAD-1 49.6 1350 0.348 0.0818 0.0550 0.0398 0.217 0.242 0.0653 0.230  0.0350 16.9
EAD-2 457 107.1 0.387  0.0820 0.0570  0.0400  0.231 0.239" 0.0624 0235 0.0353 17.8
EAD-3 524 1287 0.369  0.0831 0.0556  0.0397 0.215 0.243 0.0633 0.233  0.0351 16.3

Table 4: MAEs on the finetuning datasets comparing the performance of TorchMD-Net pre-trained with
different descriptors, evaluated under two additional hyperparameter configurations for each descriptor.
The appended number denotes the specific hyperparameter set from Table [3]that is used. Set 1 corresponds
to the original settings used in Table[2] Results are averaged over 5 runs, each with a different seed. Models
are pre-trained for 200 epochs and finetuned for 100 epochs. T indicates that the value was obtained from a
single run due to numerical instability in other runs.



Note that Set 1 in Table [3] corresponds to the original settings used to obtain the results in Table 2] The
MAEs on the fine-tuning datasets for different hyperparameter settings are presented in Table[d The feature
dimensions of each descriptor also vary significantly in magnitude: wACSF and GMP range from 20 to
140 and 10 to 31, respectively, whereas EAD spans from 1920 to 3940. This results in a difference of
approximately 400-fold between the largest and smallest dimensions. As observed in Table ] despite
variations in hyperparameter settings, the average percentage improvements in MAE over the baseline
remain relatively stable. Notably, the maximum differences in average percentage improvement for wACSF,
GMP, and EAD are 1.6%, 0.4%, and 1.5%, respectively. This suggests that pre-training with descriptors is
robust to moderate variations in descriptor parameter choices. Furthermore, the fact that EAD has up to 400
times more dimensions than GMP yet achieves only slightly better results implies that the effectiveness of
pre-training with descriptors is not highly sensitive to feature dimensionality. The model appears capable
of learning meaningful representations from each descriptor regardless of its dimensionality, at least within
the tested range of hyperparameters. However this also suggests that a path towards improved pre-training
performance may need to go beyond simple choices in the hyperparameters.

3.2 PRE-TRAINING EPOCH ABLATION

We investigate how the number of pre-training epochs on descriptor labels influences downstream test
performance during fine-tuning. The results shown in Table 2] are based on models pre-trained for 200
epochs. In this section, we further explore four additional pre-training durations—12, 25, 50, and 100
epochs—for all 3 structural descriptors. We fine-tune only the first six datasets to save computational
resources while still capturing the overall trend of pre-training epochs on downstream performance. Fig. [2]
shows the MAEs on downstream datasets plotted against the number of pre-training epochs. Overall, we
observe a general trend where increasing the number of pre-training epochs leads to a reduction in average
MAE:s. This trend is particularly evident for the GVRH, KVRH, and perovskites datasets. For the EAD
descriptor, a decreasing trend is observed across most datasets; however, this trend is not observed for the
JDFT and phonons datasets, likely due to their smaller sizes and the presence of outliers. In the case of
wACSF, while the general trend holds, the results suggest that pre-training the model for 100 epochs may
be sufficient for certain datasets. The detailed MAEs on the fine-tuning datasets for different number of
pre-training epochs are shown in Appendix [B]
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Figure 2: MAEs on the fine-tuning datasets for models pre-trained at 12, 25, 50, 100, and 200 epochs. The
results corresponding to 200 epochs are from Table@

4 DISCUSSION AND CONCLUSION

Our experiments demonstrate a significant improvement in performance using GNNs pre-trained on struc-
tural descriptors, observed consistently across all three tested descriptors. While the improvement is slightly
lower on average than pre-training with forces [26], it remains competitive across the evaluated datasets.
This slight reduction in performance is outweighed by the drastically lower cost of generating labels for
this approach, reducing computational expense by several orders of magnitude. Within the class of pre-
training approaches which do not require any quantum mechanical datasets or labels, this method yields
state-of-the-art performance to the best of our knowledge.



Therefore, this approach holds significant promise as a pre-training strategy for foundational GNNs which
could be scaled up to billions of training samples or more on appropriately sized GNN models. Subse-
quent work is required to accomplish this, including the development and optimization of more effective
physics-informed structural descriptors, as well as the creation of large-scale pre-training datasets that com-
prehensively span the materials space. Additionally, we anticipate that this approach can be integrated with
existing pre-training strategies on quantum mechanical datasets, leveraging the strengths of both method-
ologies for enhanced performance.

5 DATA AVAILABILITY

All data and materials used in this study are publicly accessible. The code supporting this work is available
on GitHub at the following repository: https://github.com/Fung-Lab/MatDeepLearn_dev,
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SUPPLEMENTARY INFORMATION

A IMPLEMENTATION DETAILS

Our implementation of the TorchMD-Net model is based on the MatDeepLearn package [1]]. Graph repre-
sentations are calculated through the algorithms released by the Open Catalyst Project (OCP) [? ].

The main hyperparameters for TorchMD-Net are shown in Table

Table A.1: TorchMD-Net hyperparameters for pre-training with descriptors.

Parameter Value or function
Hidden channels 128
Number of filters 128
Number of layers 8
Number of RBF 50
RBF type expnorm
Trainable RBF True
Cutoff distance 8.0
Max number of neighbors 32
Activation silu
Attention activation silu
Number of heads 8
Distance influence both
Number of post layers 2
Post hidden channels 128
Pooling Global add pool
Learning rate 0.0001
Batch size 8
Loss type L1 loss
Optimizer AdamW

The pre-training dataset, namely MP Relaxed, is splitonatrain:test:valratioof0.8:0.15:0.05.
All finetuning datasets are split on a train:test:val ratioof 0.6:0.2:0.2 to ensure consistency
and fair comparison. Models are pre-trained for 200 epochs and finetuned for 100 epochs for all datasets.



B PRE-TRAINING EPOCH ABLATION

wACSF

# Pre-training Epoch  JDFT Phonons Dielectric GVRH

KVRH Perovskites ‘ Avg. % Impr.

Baseline 57.6 158.6 0486  0.1100 0.0846 0.0478 ‘ -

12 49.4 121.9 0.383  0.0972 0.0646 0.0475 15.8
25 49.9 123.4 0.402  0.0937 0.0660 0.0494 14.4
50 45.7 108.5 0.415  0.0904 0.0635 0.0438 19.7
100 458 108.0 0.393  0.0860 0.0616 0.0418 22.2
200 44.0  106.5 0.404  0.0906 0.0630 0.0415 21.7
Best % Impr. 23.7 329 21.1 22.1 27.1 13.1 ‘ -

Table B.1: MAEs on the fine-tuning datasets comparing the impact of different pre-training epoch durations
on fine-tuning performance. The models are pre-trained using the wACSF descriptor for 12, 25, 50, 100,
and 200 epochs, respectively, and are then fine-tuned for 100 epochs.

GMP

# Pre-training Epoch  JDFT Phonons Dielectric GVRH

KVRH Perovskites ‘ Avg. % Impr.

Baseline 57.6 158.6 0.486  0.1100 0.0846 0.0478 ‘ -

12 47.3 117.5 0.395  0.0863 0.0629 0.0452 19.2
25 46.8 114.9 0.403  0.0851 0.0627 0.0455 19.5
50 472 117.3 0.403  0.0862 0.0636 0.0456 18.7
100 47.5 113.9 0.404  0.0829 0.0607 0.0450 20.3
200 452 1118 0.385  0.0818 0.0593 0.0420 23.3
Best % Impr. 21.6 29.5 20.8 259 29.9 12.2 ‘ -

Table B.2: MAEs on the fine-tuning datasets comparing the impact of different pre-training epoch durations
on fine-tuning performance. The models are pre-trained using the GMP descriptor for 12, 25, 50, 100, and
200 epochs, respectively, and are then fine-tuned for 100 epochs.

EAD

# Pre-training Epoch  JDFT Phonons Dielectric GVRH

KVRH Perovskites | Avg. % Impr.

Baseline 57.6 1586 0486  0.100 00846  0.0478 | -
12 492 1245 0370 00848 00594  0.0417 209
25 507 1268 0357 00838 00581  0.0405 215
50 513 1330 0363 00841 00569  0.0405 207
100 519 1350 0359 00832 00571  0.0402 20.6
200 496 1350 0348 00818 0.0550  0.0398 25
Best % Impr. 145 214 284 259 350 168 | -

Table B.3: MAEs on the fine-tuning datasets comparing the impact of different pre-training epoch durations
on fine-tuning performance. The models are pre-trained using the EAD descriptor for 12, 25, 50, 100, and
200 epochs, respectively, and are then fine-tuned for 100 epochs.
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